SINCE 2004

  • 0

      0 Item in Bag


      Your Shopping bag is empty

      CHECKOUT
  • Notice

    • ALL COMPUTER, ELECTRONICS AND MECHANICAL COURSES AVAILABLE…. PROJECT GUIDANCE SINCE 2004. FOR FURTHER DETAILS CALL 9443117328

    Projects > COMPUTER > 2017 > IEEE > WSN (ROUTING)

    Optimal Privacy-Preserving Probabilistic Routing for Wireless Networks


    Abstract

    Privacy-preserving routing protocols in wireless networks frequently utilize additional artificial traffic to hide the source-destination identities of the communicating pair. Usually, the addition of artificial traffic is done heuristically with no guarantees that the transmission cost, latency, etc., are optimized in every network topology. In this paper, we explicitly examine the privacy-utility trade-off problem for wireless networks and develop a novel privacy-preserving routing algorithm called Optimal Privacy Enhancing Routing Algorithm (OPERA). OPERA uses a statistical decision-making framework to optimize the privacy of the routing protocol given a utility (or cost) constraint. We consider global adversaries with both lossless and lossy observations that use the Bayesian maximum-a-posteriori (MAP) estimation strategy. We formulate the privacy-utility trade-off problem as a linear program which can be efficiently solved. Our simulation results demonstrate that OPERA reduces the adversary’s detection probability by up to 50% compared to the random Uniform and Greedy heuristics, and up to five times compared to a baseline scheme. In addition, OPERA also outperforms the conventional information-theoretic mutual information approach


    Existing System


    Proposed System


    Architecture


    FOR MORE INFORMATION CLICK HERE