SINCE 2004

  • 0

      0 Item in Bag


      Your Shopping bag is empty

      CHECKOUT
  • Notice

    • ALL COMPUTER, ELECTRONICS AND MECHANICAL COURSES AVAILABLE…. PROJECT GUIDANCE SINCE 2004. FOR FURTHER DETAILS CALL 9443117328

    Projects > COMPUTER > 2017 > IEEE > DATA MINING

    Confusion-matrix-based Kernel Logistic Regression for Imbalanced Data Classification


    Abstract

    There have been many attempts to classify imbalanced data, since this classification is critical in a wide variety of applications related to the detection of anomalies, failures, and risks. Many conventional methods, which can be categorized into sampling, cost-sensitive, or ensemble, include heuristic and task dependent processes. In order to achieve a better classification performance by formulation without heuristics and task dependence, we propose confusion-matrix-based kernel logistic regression (CM-KLOGR). Its objective function is the harmonic mean of various evaluation criteria derived from a confusion matrix, such criteria as sensitivity, positive predictive value, and others for negatives. This objective function and its optimization are consistently formulated on the framework of KLOGR, based on minimum classification error and generalized probabilistic descent (MCE/GPD) learning. Due to the merits of the harmonic mean, KLOGR, and MCE/GPD, CM-KLOGR improves the multifaceted performances in a well-balanced way. This paper presents the formulation of CM-KLOGR and its effectiveness through experiments that comparatively evaluated CM-KLOGR using benchmark imbalanced datasets.


    Existing System


    Proposed System


    Architecture


    FOR MORE INFORMATION CLICK HERE