SINCE 2004

  • 0

      0 Item in Bag


      Your Shopping bag is empty

      CHECKOUT
  • Notice

    • ALL COMPUTER, ELECTRONICS AND MECHANICAL COURSES AVAILABLE…. PROJECT GUIDANCE SINCE 2004. FOR FURTHER DETAILS CALL 9443117328

    Projects > ELECTRONICS > 2020 > IEEE > DIGITAL IMAGE PROCESSING

    Offline Signature Recognition and Forgery Detection using Deep Learning


    Abstract

    Authentication plays a very important role to manage security. In the modern era, it is one, in all the priorities. With the appearance of technology, the interaction with machines is turning automatic. Therefore, the need of authentication increases rapidly for various security purposes. Because of this, the biometric-based authentication has gained a drastic momentum. It is a kind of boon over other techniques. However, this event is not a replacement of drawback but varied ways are adopted to verify folks. Signature is one of the first broadly practiced biometric features for the verification of an individual. This paper proposes a method for the pre-processing of signatures to make verification simple. It also proposed a novel method for signature recognition and signature forgery detection with verification using Convolution Neural Network (CNN), Crest-Trough method and SURF algorithm & Harris corner detection algorithm. The proposed system attains an accuracy of 85-89% for forgery detection and 90-94% for signature recognition.


    Existing System

    Discrete Wavelet Transform (DWT)


    Proposed System

    The contributions of the paper are as follows: Proposed preprocessing method to make verification of signature easier. Proposed CNN, Crest-Trough algorithm based model for Signature verification system. Proposed Harris, Surf based model for forgery detection in signature.


    Architecture


    BLOCK DIAGRAM


    FOR MORE INFORMATION CLICK HERE