SINCE 2004

  • 0

      0 Item in Bag


      Your Shopping bag is empty

      CHECKOUT
  • Notice

    • ALL COMPUTER, ELECTRONICS AND MECHANICAL COURSES AVAILABLE…. PROJECT GUIDANCE SINCE 2004. FOR FURTHER DETAILS CALL 9443117328

    Projects > COMPUTER > 2017 > NON IEEE > APPLICATION

    Social Networking in Website


    Abstract

    Social sharing network allows users to create, share, annotate, and comment Medias. The large-scale user-generated metadata not only facilitate users in sharing and organizing multimedia content, but provide useful information to improve media retrieval and management. Personalized search serves as one of the search experiences is improved by generating the returned list according to the modified user search intents. Here we exploit the social annotations and propose a novel framework simultaneously considering the user and query relevance to learn to personalized image search. The basic premise is to embed the user preference and query-related search intent into user-specific topic spaces. Since the users’ original annotation is too sparse for topic modeling, we need to enrich users’ annotation pool before user-specific topic spaces construction. The proposed framework contains two components: 1) A ranking-based multi correlation tensor factorization model is proposed to perform annotation prediction, which is considered as users’ potential annotations for the images. 2) We introduce user-specific topic modeling to map the query relevance and user preference into the same user-specific topic space.


    Existing System

    In Existing System, Users may have different intentions for the same query, e.g., searching for “jaguar” by a car fan has a completely different meaning from searching by an animal specialist. One solution to address these problems is personalized search, where user-specific information is considered to distinguish the exact intentions of the user queries and re-rank the list results. Given the large and growing importance of search engines, personalized search has the potential to significantly improve searching experience.


    Proposed System

    In Proposed System We propose a novel personalized image search framework by simultaneously considering user and query information. The user’s preferences over images under certain query are estimated by how probable he/she assigns the query-related tags to the images.  A ranking based tensor factorization model named RMTF is proposed to predict users’ annotations to the images.  To better represent the query-tag relationship, we build user-specific topics and map the queries as well as the users’ preferences onto the learned topic spaces.


    Architecture


    FOR MORE INFORMATION CLICK HERE