SINCE 2004

  • 0

      0 Item in Bag


      Your Shopping bag is empty

      CHECKOUT
  • Notice

    • ALL COMPUTER, ELECTRONICS AND MECHANICAL COURSES AVAILABLE…. PROJECT GUIDANCE SINCE 2004. FOR FURTHER DETAILS CALL 9443117328

    Projects > COMPUTER > 2017 > NON IEEE > APPLICATION

    Warning Bird - A Near Real Time Application


    Abstract

    Twitter is prone to malicious tweets containing URLs for spam, phishing, and malware distribution. Conventional Twitter spam detection schemes utilize account features such as the ratio of tweets containing URLs and the account creation date, or relation features in the Twitter graph. These detection schemes are ineffective against feature fabrications or consume much time and resources. Conventional suspicious URL detection schemes utilize several features including lexical features of URLs, URL redirection, HTML content, and dynamic behavior. However, evading techniques such as time-based evasion and crawler evasion exist. In this paper, we propose WARNINGBIRD, a suspicious URL detection system for Twitter. Our system investigates correlations of URL redirect chains extracted from several tweets. Because attackers have limited resources and usually reuse them, their URL redirect chains frequently share the same URLs. We develop methods to discover correlated URL redirect chains using the frequently shared URLs and to determine their suspiciousness. We collect numerous tweets from the Twitter public timeline and build a statistical classifier using them. Evaluation results show that our classifier accurately and efficiently detects suspicious URLs. We also present WARNINGBIRD as a near real-time system for classifying suspicious URLs in the Twitter stream.


    Existing System

    In the existing system attackers use shortened malicious URLs that redirect Twitter users to external attack servers. To cope with malicious tweets, several Twitter spam detection schemes have been proposed. These schemes can be classified into account feature-based, relation feature-based, and message feature based schemes. Account feature-based schemes use the distinguishing features of spam accounts such as the ratio of tweets containing URLs, the account creation date, and the number of followers and friends. However, malicious users can easily fabricate these account features. The relation feature-based schemes rely on more robust features that malicious users cannot easily fabricate such as the distance and connectivity apparent in the Twitter graph. Extracting these relation features from a Twitter graph, however, requires a significant amount of time and resources as a Twitter graph is tremendous in size. The message feature-based scheme focused on the lexical features of messages. However, spammers can easily change the shape of their messages. A number of suspicious URL detection schemes have also been introduced.


    Proposed System

    In this paper, we propose WARNINGBIRD, a suspicious URL detection system for Twitter. Instead of investigating the landing pages of individual URLs in each tweet, which may not be successfully fetched, we considered correlations of URL redirect chains extracted from a number of tweets. Because attacker’s resources are generally limited and need to be reused, their URL redirect chains usually share the same URLs. We therefore created a method to detect correlated URL redirect chains using such frequently shared URLs. By analyzing the correlated URL redirect chains and their tweet context information, we discover several features that can be used to classify suspicious URLs. We collected a large number of tweets from the Twitter public timeline and trained a statistical classifier using the discovered features.


    Architecture


    FOR MORE INFORMATION CLICK HERE