SINCE 2004

  • 0

      0 Item in Bag


      Your Shopping bag is empty

      CHECKOUT
  • Notice

    • ALL COMPUTER, ELECTRONICS AND MECHANICAL COURSES AVAILABLE…. PROJECT GUIDANCE SINCE 2004. FOR FURTHER DETAILS CALL 9443117328

    Projects > COMPUTER > 2017 > NON IEEE > APPLICATION

    Secure Data Retrieval for Decentralized Disruption


    Abstract

    Mobile nodes in military environments such as a battlefield or a hostile region are likely to suffer from intermittent network connectivity and frequent partitions. Disruption-tolerant network (DTN) technologies are becoming successful solutions that allow wireless devices carried by soldiers to communicate with each other and access the confidential information or command reliably by exploiting external storage nodes. Some of the most challenging issues in this scenario are the enforcement of authorization policies and the policies update for secure data retrieval. Ciphertext-policy attribute-based encryption (CP-ABE) is a promising cryptographic solution to the access control issues. However, the problem of applying CP-ABE in decentralized DTNs introduces several security and privacy challenges with regard to the attribute revocation, key escrow, and coordination of attributes issued from different authorities. In this paper, we propose a secure data retrieval scheme using CP-ABE for decentralized DTNs where multiple key authorities manage their attributes independently. We demonstrate how to apply the proposed mechanism to securely and efficiently manage the confidential data distributed in the disruption-tolerant military network


    Existing System

    The concept of attribute-based encryption (ABE) is a promising approach that fulfills the requirements for secure data retrieval in DTNs. ABE features a mechanism that enables an access control over encrypted data using access policies and ascribed attributes among private keys and ciphertexts. the problem of applying the ABE to DTNs introduces several security and privacy challenges. Since some users may change their associated attributes at some point (for example, moving their region), or some private keys might be compromised, key revocation (or update) for each attribute is necessary in order to make systems secure. This implies that revocation of any attribute or any single user in an attribute group would affect the other users in the group. For example, if a user joins or leaves an attribute group, the associated attribute key should be changed and redistributed to all the other members in the same group for backward or forward secrecy. It may result in bottleneck during rekeying procedure, or security degradation due to the windows of vulnerability if the previous attribute key is not updated immediately.


    Proposed System

    Especially, ciphertext-policy ABE (CP-ABE) provides a scalable way of encrypting data such that the encryptor defines the attribute set that the decryptor needs to possess in order to decrypt the ciphertext. Thus, different users are allowed to decrypt different pieces of data per the security policy. In CP-ABE, the key authority generates private keys of users by applying the authority’s master secret keys to users’ associated set of attributes. Thus, the key authority can decrypt every ciphertext addressed to specific users by generating their attribute keys. If the key authority is compromised by adversaries when deployed in the hostile environments, this could be a potential threat to the data confidentiality or privacy especially when the data is highly sensitive. The key escrow is an inherent problem even in the multiple-authority systems as long as each key authority has the whole privilege to generate their own attribute keys with their own master secrets. Since such a key generation mechanism based on the single master secret is the basic method for most of the asymmetric encryption systems such as the attribute- based or identity-based encryption protocols, removing escrow in single or multiple-authority CP-ABE is a pivotal open problem.


    Architecture


    FOR MORE INFORMATION CLICK HERE