- ALL COMPUTER, ELECTRONICS AND MECHANICAL COURSES AVAILABLE…. PROJECT GUIDANCE SINCE 2004. FOR FURTHER DETAILS CALL 9443117328
Projects > COMPUTER > 2017 > NON IEEE > APPLICATION
Searchable encryption is of increasing interest for protecting the data privacy in secure searchable cloud storage. In this paper, we investigate the security of a well-known cryptographic primitive, namely, public key encryption with keyword search (PEKS) which is very useful in many applications of cloud storage. Unfortunately, it has been shown that the traditional PEKS framework suffers from an inherent insecurity called inside keyword guessing attack (KGA) launched by the malicious server. To address this security vulnerability, we propose a new PEKS framework named dual-server PEKS (DS-PEKS). As another main contribution, we define a new variant of the smooth projective hash functions (SPHFs) referred to as linear and homomorphic SPHF (LH-SPHF). We then show a generic construction of secure DS-PEKS from LH-SPHF. To illustrate the feasibility of our new framework, we provide an efficient instantiation of the general framework from a Decision Diffie–Hellman-based LH-SPHF and show that it can achieve the strong security against inside the KGA.
Public key Encryption with Keyword Search(PEKS)allows user search encrypted documents on an untrusted server without revealing any information. The existing PEKS scheme is that they cannot resist the Keyword Guessing Attack (KGA) launched by a malicious server.
We investigate the security of a well-known cryptographic primitive, namely, public key encryption with keyword search (PEKS) which is very useful in many applications of cloud storage. Unfortunately, it has been shown that the traditional PEKS framework suffers from an inherent insecurity called inside keyword guessing attack (KGA) launched by the malicious server. To address this security vulnerability, we propose a new PEKS framework named dual-server PEKS (DS-PEKS).As another main contribution, we define a new variant of the smooth projective hash functions (SPHFs) referred to as linear and homomorphic SPHF (LH-SPHF). We then show a generic construction of secure DS-PEKS from LH-SPHF. To illustrate the feasibility of our new framework, we provide an efficient instantiation of the general framework from a Decision Diffie–Hellman-based LH-SPHF and show that it can achieve the strong security against inside the KGA.