- ALL COMPUTER, ELECTRONICS AND MECHANICAL COURSES AVAILABLE…. PROJECT GUIDANCE SINCE 2004. FOR FURTHER DETAILS CALL 9443117328
Projects > ELECTRONICS > 2017 > IEEE > DIGITAL IMAGE PROCESSING
One key challenging issue of facial expression recognition is to capture the dynamic variation of facial physical structure from videos. In this paper, we propose a Part-based Hierarchical Bidirectional Recurrent Neural Network (PHRNN) to analyze the facial expression information of temporal sequences. Our PHRNN models facial morphological variations and dynamical evolution of expressions, which is effective to extract “temporal features†based on facial landmarks (geometry information) from consecutive frames. Meanwhile, in order to complement the still appearance information, a Multi-Signal Convolutional Neural Network (MSCNN) is proposed to extract “spatial features†from still frames. We use both recognition and verification signals as supervision to calculate different loss functions, which are helpful to increase the variations of different expressions and reduce the differences among identical expressions. This deep Evolutional Spatial-Temporal Networks (composed of PHRNN and MSCNN) extract the partial-whole, geometry-appearance and dynamic-still information, effectively boosting the performance of facial expression recognition.
Deep Neural Network, Constrained Local Models, Multidimensional Recurrent Neural Networks.
The main contributions of this paper are three-fold. Firstly, we propose a PHRNN model to extract dynamic geometry information. Landmarks are decomposed into different parts according to the facial morphological variations, which are helpful to model dynamical evolution of expression. Secondly, in order to complement the still appearance information, we propose a MSCNN model with both recognition and verification signals used as supervision. The two signals correspond to two different loss functions, which are helpful to increase the variations of different expressions and reduce the difference among identical expressions. Thirdly, the PHRNN and MSCNN complement each other to compose the Evolutional Spatial-Temporal Networks, which considers partial-whole, geometry appearance and dynamic-still information simultaneously.
Spatial-Temporal Network
Proposed MSCNN