SINCE 2004

  • 0

      0 Item in Bag


      Your Shopping bag is empty

      CHECKOUT
  • Notice

    • ALL COMPUTER, ELECTRONICS AND MECHANICAL COURSES AVAILABLE…. PROJECT GUIDANCE SINCE 2004. FOR FURTHER DETAILS CALL 9443117328

    Projects > COMPUTER > 2017 > NON IEEE > APPLICATION

    Time-and-Energy-Aware Computation Offloading in Handheld Devices to Coprocessors and Clouds


    Abstract

    Running sophisticated software on smart phones could result in poor performance and hortened battery lifetime because of their limited resources. Recently, offloading omputation workload to the cloud has become a promising solution to enhance both performance and battery life of smart phones. However, it also consumes both time and energy to upload data or programs to the cloud and retrieve the results from the cloud. In this paper, we develop an offloading framework, named Ternary Decision Maker (TDM), which aims to shorten response time and reduce energy consumption at the same time. Unlike previous works, our targets of execution include an on-board CPU, an on-board GPU, and a cloud, all of which combined provide a more flexible execution environment for mobile applications. We conducted a real-world application, i.e., matrix multiplication, in order to evaluate the performance of TDM. According to our experimental results, TDM has less false offloading decision rate than existing methods. In addition, by offloading modules, our method can achieve, at most, 75% savings in execution time and 56% in battery usage.


    Existing System


    Proposed System


    Architecture


    FOR MORE INFORMATION CLICK HERE