SINCE 2004

  • 0

      0 Item in Bag


      Your Shopping bag is empty

      CHECKOUT
  • Notice

    • ALL COMPUTER, ELECTRONICS AND MECHANICAL COURSES AVAILABLE…. PROJECT GUIDANCE SINCE 2004. FOR FURTHER DETAILS CALL 9443117328

    Projects > COMPUTER > 2017 > IEEE > DATA MINING

    GALLOP: GlobAL feature fused Location Prediction for Different Check-in Scenarios


    Abstract

    Location prediction is widely used to forecast users’ next place to visit based on his/her mobility logs. It is an essential problem in location data processing, invaluable for surveillance, business, and personal applications. It is very challenging due to the sparsity issues of check-in data. An often ignored problem in recent studies is the variety across different check-in scenarios, which is becoming more urgent due to the increasing availability of more location check-in applications. In this paper, we propose a new feature fusion based prediction approach, GALLOP, i.e., GlobAL feature fused LOcation Prediction for different check-in scenarios. Based on the carefully designed feature extraction methods, we utilize a novel combined prediction framework. Specifically, we set out to utilize the density estimation model to profile geographical features, i.e., context information, the factorization method to extract collaborative information, and a graph structure to extract location transition patterns of users’ temporal check-in sequence, i.e., content information. An empirical study on three different check-in datasets demonstrates impressive robustness and improvement of the proposed approach.


    Existing System


    Proposed System


    Architecture


    FOR MORE INFORMATION CLICK HERE